Q1.

In a time of flight mass spectrometer, molecule X is ionised using electrospray ionisation.

What is the equation for this ionisation?

Q2.

What is the electron configuration of V²⁺ in the ground state?

(Total 1 mark)

Q3.

Which atom has one more proton and two more neutrons than $\frac{31}{15}P$?

Q4.

Which element has a first ionisation energy lower than that of sulfur?

(Total 1 mark)

Q5.

The first seven successive ionisation energies for element Z are shown.

Q6.

Which has the electron configuration of a noble gas?

Α	H+	\circ
в	0-	\circ
С	Se ²⁻	$^{\circ}$
D	Zn ²⁺	\circ

(Total 1 mark)

Q7.

Which atom has the smallest number of neutrons?

Α	зН	0
В	⁴ He	0
С	⁵He	0
D	⁴ Li	0

(Total 1 mark)

Q8.

Which is the electron configuration of an atom with only two unpaired electrons?

 $^{\circ}$

D 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁵

(Total 1 mark)

Q9.

Which shows the electron configuration of an atom of a transition metal?

Q10.

Which atom has the greatest first ionisation energy?

(Total 1 mark)

Q11.

A student has a 10 cm³ sample of 1.00×10^{-2} mol dm⁻³ methanoic acid solution. The student is asked to dilute the methanoic acid solution to a concentration of 2.00×10^{-4} mol dm⁻³ by adding distilled water.

Which volume of water should be added?

Α	200 cm ³	0
в	490 cm ³	0
С	500 cm ³	0
D	510 cm ³	0

Q12.

In the early twentieth century the apparatus shown in the diagram was used to investigate atomic structure. When He^{2+} particles were fired at a thin sheet of gold, most of the particles were detected at point **P**.

What conclusion can be drawn from the detection of He²⁺ particles at point **P**?

- A Gold atoms contain electrons.
- **B** Gold atoms contain protons.
- **C** Gold atoms contain neutrons.
- **D** Gold atoms are mainly empty space.

⁽Total 1 mark)

Q13.

When He^{2+} particles were fired at a thin sheet of gold, about 1 in 8000 of the particles were detected at point **Q**.

What conclusion can be drawn from the detection of He²⁺ particles at point Q?

- **A** Gold atoms have a small, positive nucleus.
- **B** Gold atoms have electrons in orbitals.
- **C** Gold consists of ions in a sea of delocalised electrons.
- **D** Gold atoms have more protons than He²⁺ particles.

(Total 1 mark)

Q14.

Which statement about time of flight mass spectrometry is correct?

		(Total 1 mark)
D	lons are accelerated by a magnetic field	0
С	Particles are detected in the order of their kinetic energies	0
В	Sample particles gain electrons to form positive ions	0
Α	The current in the detector is proportional to the ion abundance	0

Q15.

Chlorine exists as two isotopes 35Cl and 37Cl in the ratio 3:1

Which statement about peaks in the mass spectrum of Cl₂ is correct?

Α	Peaks at $m/z = 70$ and 74 in the ratio 3:1	0
в	Peaks at m/z = 70, 72 and 74 in the ratio $9:6:1$	0
С	Peaks at m/z = 70, 72 and 74 in the ratio $9:3:1$	0
D	Peaks at $m/z = 70$ and 72 in the ratio 3:1	0

Q16.

Element Q forms a sulfate with formula QSO₄

Which of these could represent the electronic configuration of an atom of Q?

(Total 1 mark)

(Total 1 mark)

Q17.

Which of these has the highest first ionisation energy?

Q18.

Which of these correctly shows the numbers of sub-atomic particles in a $^{41}\mbox{K}^+$ ion?

	Number of electrons	Number of protons	Number of neutrons	
Α	19	19	20	0
В	18	20	21	С
С	18	19	22	0
D	19	18	23	0

Q19.

Bromine exists as two isotopes ⁷⁹Br and ⁸¹Br, which are found in almost equal abundance.

Which of the statements is correct?

			(Total 1 mark)
D	⁷⁹ Br is more reactive than ⁸¹ Br	0	
С	The mass spectrum of C_3H_7Br has two molecular ion peaks at 122 and 124	0	
в	The atomic radius of ⁷⁹ Br is less than the atomic radius of ⁸¹ Br	0	
A	The first ionisation energy of ⁷⁹ Br is less than the first ionisation energy of ⁸¹ Br	0	

Q20.

Which species has the same number of electrons as the radical $\cdot CH_3$?

⁽Total 1 mark)

Q21.

What are the numbers of neutrons and electrons in the 57Fe2+ ion?

	Neutrons	Electrons	
Α	31	24	0
В	57	24	0
С	31	26	0
D	57	28	0

(Total 1 mark)

Q22.

What is the electron configuration of Cu²⁺?

Α	[Ar]3d ⁹ 4s ²	0
в	[Ar]3d ¹⁰ 4s ¹	0
С	[Ar]3d ⁹	0
D	[Ar]3d ¹⁰	0

(Total 1 mark)

Q23.

Which of these atoms has the largest atomic radius?

Q24.

Which of these atoms has the smallest number of neutrons?

(Total 1 mark)

Q25.

Which change requires the largest amount of energy?

Α	$He^{+}(g) \longrightarrow He^{2+}(g) + e^{-}$	0
В	$Li(g) \longrightarrow Li^+(g) + e^-$	0
С	$Mg^{+}(g) \longrightarrow Mg^{2+}(g) + e^{-}$	0
D	$N(g) \longrightarrow N^+(g) + e^-$	0

(Total 1 mark)

Q26.

lons of two isotopes of iron are

⁵³Fe²⁺ ⁵⁶Fe²⁺

Which statement is correct?

- A The ions of both the isotopes have the electronic configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁶
- **B** The ions of both the isotopes contains 26 neutrons
- C ⁵³Fe²⁺ has fewer protons than ⁵⁶Fe²⁺

	0	
Γ	0]

0

0

D After acceleration to the same kinetic energy $^{56}\mbox{Fe}^{2+}$ will move more slowly than $^{53}\mbox{Fe}^{2+}$

(Total	1	mark)
--------	---	-------

C Aluminium

D Boron

Q27.

The successive ionisation energies for element X are shown in the following graph.

0